Plan

- DIRAC Project
 - Origins
 - Agent based Workload Management System
 - Accessible computing resources
 - Data Management
 - Interfaces
- DIRAC users
- DIRAC as a service
- Conclusions
Data flow to permanent storage: 6-8 GB/sec

- LHCb ~ 30 MB/sec
- ATLAS ~ 320 MB/sec
- ALICE ~ 100 MB/sec
- CMS ~ 220 MB/sec

400-500 MB/sec
1-2 GB/sec
~ 4 GB/sec
1-2 GB/sec
Worldwide LHC Computing Grid Collaboration (WLCG)

- >100 PB of data at CERN and major computing centers
- Distributed infrastructure of 150 computing centers in 40 countries
- 300+ k CPU cores (~ 2M HEP-SPEC-06)
- The biggest site with ~50k CPU cores, 12 T2 with 2-30k CPU cores
- Distributed data, services and operation infrastructure
DIRAC Grid Solution

- LHC experiments, all developed their own middleware to address the above problems
 - PanDA, AliEn, glideIn WMS, PhEDEx, ...

- DIRAC is developed originally for the LHCb experiment

- The experience collected with a production grid system of a large HEP experiment is very valuable
 - Several new experiments expressed interest in using this software relying on its proven in practice utility

- In 2009 the core DIRAC development team decided to generalize the software to make it suitable for any user community.
 - Consortium to develop, maintain and promote the DIRAC software
 - CERN, CNRS, University of Barcelona, IHEP, KEK

- The results of this work allow to offer DIRAC as a general purpose distributed computing framework
DIRAC provides all the necessary components to build ad-hoc grid infrastructures interconnecting computing resources of different types, allowing interoperability and simplifying interfaces. This allows to speak about the DIRAC interware.
DIRAC Workload Management
Including resources in different grids and standalone clusters is simple with Pilot Jobs

- Needs a specialized Pilot Director per resource type
- Users just see new sites appearing in the job monitoring
WMS: applying VO policies

- In DIRAC both User and Production jobs are treated by the same WMS
 - Same Task Queue

- This allows to apply efficiently policies for the whole VO
 - Assigning Job Priorities for different groups and activities
 - Static group priorities are used currently
 - More powerful scheduler can be plugged in
 - demonstrated with MAUI scheduler

- Users perceive the DIRAC WMS as a single large batch system
DIRAC computing resources
DIRAC was initially developed with the focus on accessing conventional Grid computing resources
- WLCG grid resources for the LHCb Collaboration

It fully supports gLite middleware based grids
- European Grid Infrastructure (EGI), Latin America GISELA, etc
 - Using gLite/EMI middleware
- Northern American Open Science Grid (OSG)
 - Using VDT middleware
- Northern European Grid (NDGF)
 - Using ARC middleware

Other types of grids can be supported
- As long we have customers needing that
VM scheduler developed for Belle MC production system
- Dynamic VM spawning taking Amazon EC2 spot prices and Task Queue state into account
- Discarding VMs automatically when no more needed

The DIRAC VM scheduler by means of dedicated VM Directors is interfaced to
- OCCI compliant clouds:
 - OpenStack, OpenNebula
 - CloudStack
 - Amazon EC2
Standalone computing clusters

- Off-site Pilot Director
 - Site delegates control to the central service
 - Site must only define a dedicated local user account
 - The payload submission through the SSH tunnel

- The site can be a single computer or a cluster with a batch system
 - LSF, BQS, SGE, PBS/Torque, Condor, OAR, SLURM
 - HPC centers
 - More to come:
 - LoadLeveler, etc

- The user payload is executed with the owner credentials
 - No security compromises with respect to external services
Data Management
DM Problem to solve

- Data is partitioned in files
- File replicas are distributed over a number of Storage Elements world wide

Data Management tasks
- Initial File upload
- Catalog registration
- File replication
- File access/download
- Integrity checking
- File removal

- Need for transparent file access for users
- Often working with multiple (tens of thousands) files at a time
 - Make sure that ALL the elementary operations are accomplished
 - Automate recurrent operations
Storage plugins

- Storage element abstraction with a client implementation for each access protocol
 - DIPS, SRM, XROOTD, RFIO, etc
 - gfal2 based plugin gives access to all protocols supported by the library
 - DCAP, WebDAV, S3, http, …
 - iRODS

- Each SE is seen by the clients as a logical entity
 - With some specific operational properties
 - SE’s can be configured with multiple protocols
Central File Catalog (DFC, LFC, ...)
- Keeps track of all the physical file replicas

Several catalogs can be used together
- The mechanism is used to send messages to "pseudocatalog" services, e.g.
 - Transformation service (see later)
 - Bookkeeping service of LHCb
- A user sees it as a single catalog with additional features

DataManager is a single client interface for logical data operations
DFC is the central component of the DIRAC Data Management system

Defines a single logical name space for all the data managed by DIRAC

Together with the data access components DFC allows to present data to users as single global file system

- User ACLs
- Rich metadata including user defined metadata
DFC is Replica and Metadata Catalog

- User defined metadata
- The same hierarchy for metadata as for the logical name space
 - Metadata associated with files and directories
 - Allow for efficient searches
- Efficient Storage Usage reports
 - Suitable for user quotas

Example query:

```
find /lhcb/mcdata LastAccess < 01-01-2012 GaussVersion=v1,v2 SE=IN2P3,CERN Name=*.raw
```
Replication/Removal Requests with multiple files are stored in the RMS

- By users, data managers, Transformation System

The Replication Operation executor

- Performs the replication itself or
- Delegates replication to an external service
 - E.g. FTS
- A dedicated FTSManager service keeps track of the submitted FTS requests
- FTSMonitor Agent monitors the request progress, updates the FileCatalog with the new replicas
- Other data moving services can be connected as needed
 - EUDAT
 - Onedata
Transformation System

- Data driven workflows as chains of data transformations
 - Transformation: input data filter + recipe to create tasks
 - Tasks are created as soon as data with required properties is registered into the system
 - Tasks: jobs, data replication, etc

- Transformations can be used for automatic data driven bulk data operations
 - Scheduling RMS tasks
 - Often as part of a more general workflow
Interfaces
DM interfaces

- Command line tools
 - Multiple dirac-dms-... commands

- COMDIRAC
 - Representing the logical DIRAC file namespace as a parallel shell
 - dls, dcd, dpwd, dfind, ddu etc commands
 - dput, dget, drepl for file upload/download/replication

- REST interface
 - Suitable for use with application portals
 - WS-PGRADE portal is interfaced with DIRAC this way
DIRAC is aiming at providing an abstraction of a single computer for massive computational and data operations from the user perspective

- Logical Computing and Storage elements (Hardware)
- Global logical name space (File System)
- Desktop-like GUI
DIRAC Users
Up to 100K concurrent jobs in ~120 distinct sites

- Equivalent to running a virtual computing center with a power of 100K CPU cores

Further optimizations to increase the capacity are possible
- Hardware, database optimizations, service load balancing, etc
Community installations

- **Belle II Collaboration, KEK**
 - First use of clouds (Amazon) for data production
- **ILC/CLIC detector Collaboration, Calice VO**
 - Dedicated installation at CERN, 10 servers, DB-OD MySQL server
 - MC simulations
 - DIRAC File Catalog was developed to meet the ILC/CLIC requirements
- **BES III, IHEP, China**
 - Using DIRAC DMS: File Replica and Metadata Catalog, Transfer services
 - Dataset management developed for the needs of BES III
- **CTA**
 - CTA started as France-Grilles DIRAC service customer
 - Now is using a dedicated installation at PIC, Barcelona
 - Using complex workflows
- **Geant4**
 - Dedicated installation at CERN
 - Validation of MC simulation software releases
- **DIRAC evaluations by other experiments**
 - LSST, Auger, TREND, Daya Bay, Juno, ELI, NICA, …
 - Evaluations can be done with general purpose DIRAC services
DIRAC services are provided by several National Grid Initiatives: France, Spain, Italy, UK, China, …

- Support for small communities
- Heavily used for training and evaluation purposes

Example: France-Grilles DIRAC service

- Hosted by the CC/IN2P3, Lyon
- Distributed administrator team
 - 5 participating universities
- 15 VOs, ~100 registered users
- In production since May 2012
 - >12M jobs executed in the last year
 - At ~90 distinct sites

DIRAC4EGI service

- In production since 2014
- Partners
 - Operated by EGI
 - Hosted by CYFRONET
 - DIRAC Project providing software, consultancy
- **10 Virtual Organizations**
 - enmr.eu
 - vlemed
 - eiscat.se
 - fedcloud.egi.eu
 - training.egi.eu
 - ...
- Usage
 - > 6 million jobs processed in the last year
DIRAC Framework
DIRAC Framework

- DIRAC has a well defined architecture and development framework
 - Standard rules to create DIRAC extension
 - LHCbDIRAC, BESDIRAC, ILCDIRAC, …
- Large part of the functionality is implemented as plugins
 - Almost the whole DFC service is implemented as a collection of plugins
- Examples
 - Support for datasets first added to the BESDIRAC
 - LHCb has a custom Directory Tree module in the DIRAC File Catalog
- Allows to customize the DIRAC functionality for a particular application with minimal effort
Conclusions

- Computational grids and clouds are no more something exotic, they are used in a daily work for various applications.

- Agent based workload management architecture allows to seamlessly integrate different kinds of grids, clouds and other computing resources.

- DIRAC is providing a framework for building distributed computing systems and a rich set of ready to use services. This is used now in a number of DIRAC service projects on a regional and national levels.

- Services based on DIRAC technologies can help users to get started in the world of distributed computations and reveal its full potential.

http://diracgrid.org
Demo
Demo

- Using EGI sites and storage elements
 - Grid sites
 - Fed Cloud sites
 - DIRAC Storage Elements

- Web Portal
- Command line tools

- Demo materials to try out off-line can be found here